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The replicator equation is a standard model of evolutionary population game dynamics. In

this article, we consider a modification of replicator dynamics, in which playing a partic-

ular strategy depletes an associated resource, and the payoff for that strategy is a function

of the availability of the resource. Resources are assumed to replenish themselves, given

time. Overuse of a resource causes it to crash. If the depletion rate is low enough, most

trajectories converge to a stable equilibrium at which all initially present strategies are

equally popular. As the depletion rate increases, these fixed points vanish in bifurcations.

The phase space is periodic in each of the resource variables, and it is possible for trajec-

tories to whirl around different numbers of times in these variables before converging to

the stable equilibrium, resulting in a wide variety of topological types of orbits. Numerical

solutions in a low-dimensional case show that in a cross section of the phase space, the

topological types are separated by intricately folded separatrices. Once the depletion rate

is high enough that the stable equilibrium in the interior of the phase space vanishes, the

dynamics immediately become chaotic, without going through a period-doubling cascade;

a numerical method reveals horseshoes in a Poincaré map. It appears that the multitude of

topological types of orbits present before this final bifurcation generate this chaotic behav-

ior. A periodic orbit of saddle type can be found using the symmetries of the dynamics,

and its stable and unstable manifolds may generate a homoclinic tangle.
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In the field of evolutionary game dynamics, a standard mathematical model is the replica-

tor equation, which represents the behavior of an infinite population of individuals playing

an abstract two-player game. A strategy that earns a higher payoff than the population-

wide average will become more common, at the expense of strategies with lower payoffs,

representing evolution by selection. If game payoffs are constant, the dynamics are well un-

derstood. In this article, we consider a modification in which the payoff for playing a strategy

is not constant, but is a function of how much of an abstract resource is available. Playing

a strategy consumes some of the associated resource. Each resource replenishes itself nat-

urally. If a resource is depleted so rapidly that the available amount drops below a tipping

point, it will crash and the associated strategy will become very expensive until the resource

has time to recover. To keep the model tractable, we focus on a highly symmetric case. The

resulting model has surprisingly complex behavior. A parameter controls the overall rate at

which resources are depleted. For small values of this parameter, the population generally

settles at a stable equilibrium, with some resources experiencing crashes beforehand. When

it exceeds a threshold, the stable equilibrium no longer exists. Resources crash as soon as

they are renewed, resulting in chaotic oscillations.

I. INTRODUCTION

The replicator equation represents natural selection acting on a population in which several

strategies for playing an abstract game compete. In the original formulation, the fitness associated

with playing a particular strategy depends on a constant payoff matrix and the population state,

that is, the fraction of the population that currently uses each available strategy. The dynamics

in this case are well understood11. It is typical for populations to converge to an evolutionarily

stable state if one exists, for example. In this article, we formulate a novel modification to the

standard replicator equation in which each strategy is associated with a resource, and the resource

is consumed in proportion to the popularity of the strategy. In isolation, each resource is governed

by dynamics similar to an excitable unit from theoretical neuroscience, with a rest state at its

maximum level. After a small perturbation, the resource quickly returns to its rest state. Perturbing

it past a tipping point causes it to crash to its minimum level, then recover over time to its rest

state. Continuous depletion of the resource at a low rate causes it to settle at an equilibrium close
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to its maximum, but if it is depleted too rapidly, the equilibrium vanishes in a bifurcation, and

the resource experiences continual crashes. When several such resources are coupled to replicator

dynamics, the combined behavior is remarkably complicated.

In this article, only the most symmetric case is considered. The strategies are interchangeable

and the dynamics are invariant under parallel permutation of population state variables and re-

source variables. It is therefore possible to identify and analyze all fixed points and bifurcations

of the dynamics for an arbitrary number of strategies13. A parameter β controls the overall time

scale of resource consumption. For low values of β , most trajectories converge to a stable fixed

point, in which all strategies are equally popular. For larger values of β , that fixed point vanishes

in a degenerate saddle-node bifurcation, and it appears that there are no longer any stable orbits.

The result is an immediate transition to chaos, with no period-doubling cascade.

In Section I A, essential background on the standard replicator equation is given. A differen-

tial equation for the type of resource under consideration is formulated in Section I B. It is not

derived from any specific application. It is meant as a general, simple representation of a renew-

able resource that cannot be permanently exhausted. Combined replicator-resource dynamics are

formulated in Section I C.

A sink and a source in the interior of the phase space are described in Sections II A and II B.

These steer the behavior of most trajectories in the interior of the phase space. For the case

of two strategies, fixed points on the boundary of the phase space are found and analyzed in

Sections II C and II D. Generalizing to any number of strategies, fixed points on the boundary are

found inductively, based on the number of strategies that are permanently extinct on various parts

of the boundary. This process is given in Section II E.

Bifurcations are found in terms of the depletion rate parameter β . As β increases, the first

bifurcations are of saddle-node type, in which some fixed points on the boundary collide and

vanish. Once this happens, trajectories are able to whirl around the interior of the phase space in

complicated ways, the details of which are given in Section II F. This whirling represents resources

experiencing a finite number of crash-and-recovery cycles before the population reaches a stable

equilibrium.

The last bifurcation is the collision of the two interior fixed points, described in Section II G.

Once this happens, there appear to be no stable orbits left in the phase space, and the dynamics

immediately become chaotic. Numerical evidence of horseshoes in a Poincaré map supports the

claim that the irregular oscillations are indeed chaotic. The symmetry of the dynamics forces a
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certain periodic orbit of saddle type to exist in this regime, as explained in Section II H. Its stable

manifold may be important in organizing the chaotic trajectories.

These results for the relatively simple, highly symmetric case of replicator dynamics with de-

pletable resources open the path to considering more complicated dynamical systems. In Sec-

tion III, conclusions are drawn and further topics of investigation are proposed.

A. Background on replicator dynamics

The basic replicator equation is formulated as follows11. Consider a population of individual

organisms, each of which is of some type k ∈ {1,2, . . . ,K}. The number of types K is finite. The

population is well mixed and unstructured, so that individuals interact with each other uniformly.

In contrast to the discrete Moran and Wright-Fisher models4,18, it is assumed that the number of

individuals is large enough that an infinite population approximation with continuous time is ap-

propriate. That is, rather than keep track of the number of individuals of each type, the population

state is represented by variables x1, x2, . . . , xK , where each xk is the fraction of the population of

type k. Thus, the population is represented by a time-dependent state vector x = (x1,x2, . . . ,xK)

that takes values in a K-vertex simplex S K ,

S K =

{
(x1,x2, . . . ,xK)

∣∣∣∣∣ 0 ≤ xk,∑
k

xk = 1

}
. (1)

Reproduction is asexual and without mutation. Associated to each type k is a real-valued fitness

ck that is a function of the environment, including the population state. The rate of change of xk is

jointly proportional to xk and to the difference between the fitness ck and the average fitness φ ,

φ = ∑
k

xkck, or in vector notation, φ = x · c. (2)

This results in the general replicator equation,

ẋk = xk(ck −φ) (3)

where the dot indicates the derivative with respect to time t.

It is typically assumed that each type corresponds to a strategy in an abstract two-player game,

and it is in this context that Eq. (3) was originally formulated19,20,22. The game is specified by

a payoff matrix A, in which the entry Ak, j is the payoff earned by a player of strategy k when

interacting with a player of strategy j. The game is symmetric in the sense that all players have
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the same inventory of strategies. The fitness of type k is the expected payoff for playing strategy k

when the opposing strategy is distributed according to the population vector,

ck = ∑
j

Ak, jx j, or in vector notation, c = Ax, (4)

as if every member of the population is continuously playing every other member. Given these as-

sumptions, the dynamical system Eq. (3) may be derived as a change of variables from generalized

Lotka-Volterra dynamics11.

The dynamical system Eq. (3) has several important properties. It is expressed with K variables

xk, but the constraint ∑k xk = 1 reduces the number of degrees of freedom by 1. The phase space

in Eq. (1) is part of a hyperplane H of dimension K −1 in RK ,

H =

{
(x1,x2, . . . ,xK)

∣∣∣∣∣ ∑
k

xk = 1

}
= {x | x ·1 = 1}

(5)

where 1 is the vector of all 1s,

1 = (1, . . . ,1). (6)

Consequently, one of two methods must be used when studying the dynamics of Eq. (3). The first

will be called the reduced system method, which is to eliminate the variable xK , and replace it with

xK = 1−x1−x2−·· ·−xK−1 in the remaining equations. That substitution leaves K−1 differential

equations in K − 1 variables, which matches the number of degrees of freedom, but the resulting

differential equations are more complicated.

The second will be called the extended phase space method, which is to think of x as an element

of RK and treat S K as an invariant manifold and trapping region within RK . This method preserves

the simplicity of the differential equations, but requires the consideration of system states x that

are not in S K and are therefore not interpretable as population states.

To confirm that the hyperplane H is invariant under Eq. (3), define

M = ∑
k

xk (7)

5



and observe that

Ṁ = ∑
k

ẋk

= ∑
k

xk (ck −φ)

=

(
∑
k

xkck

)
−

(
∑
k

xk

)
φ

= (1−M)φ .

Therefore, if any point on a trajectory satisfies M = 1, then the entire trajectory does as well, so it

lies within H .

The boundary of S K consists of lower-dimensional simplices formed by points x where some

of the coordinates are 0. Conceptually, each such face consists of population states where one or

more types is permanently extinct. Each face is invariant under Eq. (3), because if any point on

a trajectory satisfies xk = 0, then xk = 0 for all time. If a type is extinct at some time, there is no

mechanism in the dynamics to cause it to appear at a non-zero level. In particular, mutation is not

part of the basic replicator dynamics under consideration here. The faces of S K are barriers to

the dynamics, because if a trajectory were to cross through one, it would violate the uniqueness of

the solution to the initial value problem at that point. Thus, extinction in finite time is not possible

in replicator dynamics. If a type is present in the population at a non-zero level at any time, it is

permanently present, although it is possible for xk to converge to 0 as t → ±∞. Since S K lies

within the invariant hyperplane H and its entire boundary acts as a barrier under the dynamics,

the whole simplex is invariant under the dynamics.

Given a set L ⊂ {1, . . . ,K} of type indices, one can consider the dynamics of Eq. (3) supposing

that all types outside of L are extinct. That means xk is permanently 0 if k 6∈ L, and the collection

of xk for k ∈ L is effectively a lower-dimensional instance of replicator dynamics. This nested

structure is useful in understanding the dynamics, as results that hold for a general number of

types can be applied to the phase space as a whole and to each of the boundary simplices.

Many variations on Eq. (3) are possible. For example, the dynamics may be modified to include

mutation and learning, in which case chaotic dynamics are possible13–16. One can also introduce

multi-player games24 and spatial structure3. It is possible to formulate similar dynamics as an

iterated map in discrete time, and these can have very complex behavior17.

Generally, it is assumed that the payoff matrix A is constant, in which case a great deal is

known about Eq. (3)11. However, a constant A implies a constant environment, in contrast to nat-
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ural environments, which fluctuate. The new feature considered in this article is to suppose that

fitness depends on depletable resources in the environment, which means that a constant A is no

longer sufficient. Once A is allowed to vary, the possible behaviors of Eq. (3), or most other popu-

lation game dynamics, become almost unlimited, and complete mathematical analysis is no longer

possible. Some restrictions must be placed on the dynamic environment. For example, one could

consider seasonal variation8; augmenting a game matrix when a mutant appears12; or modeling

the environment as a Markov chain1. For this article, the restrictions are that coupling between

resources and strategies is one to one, that the fitness of strategy k depends only on the associated

resource, and that resources follow identical dynamics derived from the basic model developed in

Section I B. The resulting system of differential equations is invariant under permutations of the

indices, and this invariance facilitates the analysis.

B. Formulation of resource dynamics

In this section, the dynamics of a general renewable resource variable θ are developed. The

phase space of θ is generally taken to be the circle T 1. The notation θ ∼= . . . will be used to mean

that θ ∈ T 1 can be thought of as the given real number plus an unspecified integer multiple of

2π . An = will be used in a few cases where it is helpful to use R as the phase space because the

magnitude of θ as a real number is relevant. In the absence of depletion, the dynamics for θ are

θ̇ = cos(θ + γ)− cosγ. (8)

The real number γ ∈ (0,π/2) is a constant parameter that controls the locations of two equilibrium

states. The restriction on γ is so that 0 < sinγ < 1 and 0 < cosγ < 1. By design, under Eq. (8), θ

has a stable equilibrium at 0 and an unstable equilibrium at −2γ , as in Fig. 1. Direct substitution

confirms that θ̇ = 0 at these two numbers, and linear stability analysis confirms that they have the

intended stability.

The equilibrium at θ ∼= 0 represents the state of maximum availability of the resource. The

equilibrium at θ ∼=−2γ is a tipping point. If θ is perturbed past −2γ , the dynamics take it the long

way around the circle before it returns to 0, which represents a crash in the resource followed by

recovery. Such an excursion is roughly analogous to an action potential followed by a refractory

period in an excitable neuron6. The dynamics in Eq. (8) are essentially the same as the Ermentrout-

Kopell canonical model of an excitable unit5,7.
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θ ∼= 0

θ ∼=−2γ

Figure 1. Phase portrait of Eq. (8). The green dot is the stable equilibrium at θ ∼= 0, and the red dot is the

stable equilibrium at θ ∼=−2γ . For this picture, γ = π/4.

(a) (b) (c) (d)

Figure 2. Phase portrait of Eq. (9). The green dot is the stable equilibrium at θ ∼= θ̄+, and the red dot is the

stable equilibrium at θ ∼= θ̄−. As d increases, the equilibrium points move closer together as in (b). In (c),

d = 1− cosγ and they collide at the blue dot. In (d), d > 1− cosγ and they no longer exist.

To incorporate depletion of the resource at a constant rate d > 0, an extra term is inserted into

Eq. (8) yielding

θ̇ = cos(θ + γ)− cosγ −d. (9)

For small values of d, there are still two equilibrium points located at

θ̄± =−γ ± arccos(d + cosγ).

Linear stability analysis confirms that θ+ is stable and θ− is unstable. As d increases, the equi-

librium points move closer together. When d = 1− cosγ , they collide, and for larger d, they do

not exist. This is a standard saddle-node bifurcation, as shown in Fig. 2. After the bifurcation, θ

whirls irregularly without stopping. Conceptually, d > 1− cosγ means that the depletion rate d is

so high that the resource repeatedly crashes and recovers.

In Section I C, the fitness derived from using the resource is cosθ , which is maximized at

θ ∼= 0. Thus, when the resource is depleted at a low rate and the population approaches a stable

equilibrium, θ will converge to a steady state at which the fitness is less than the maximum,

representing the fact that when a non-zero portion of the population uses the resource, the payoff

from playing the corresponding strategy is reduced by some implicit cost of the resource that

increases with the demand.
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Other resource dynamics could be considered, of course. The differential equation given in

Eq. (9) was chosen because it is relatively simple, requires only one dynamic variable, does not

allow the resource to be permanently exhausted, settles at an equilibrium of sub-maximum fitness

when depleted slowly, and results in interesting combined replicator-resource dynamics.

C. Formulation of combined replicator-resource dynamics

The remainder of this article is concerned with the dynamical system defined in Eqs. (10)

to (11) as follows.

Assume that there are K strategies in an abstract game, each of which requires the consumption

of a single resource. The payoff for playing strategy k is ck = cosθk, independent of the population

state. Combining this payoff with Eq. (3) yields

ẋk = xk (cosθk −φ) (10)

where φ is as in Eq. (2),

φ = ∑
k

xk cosθk.

The resource variables θk change according to a modification of Eq. (9),

θ̇k = a× (cos(θk + γ)− cosγ −βxk) (11)

where a > 0, 0 < γ < π/2, and β ≥ 0 are parameters. The dynamics are clearly symmetric under

parallel permutations of the xk’s and θk’s.

The time variable t is scaled so that one time unit corresponds to approximately the natural

lifespan of the species. The overall factor a in Eq. (10) determines the timescale of resource

depletion compared to the timescale of birth and death. If a > 1, then depletion is rapid enough to

significantly affect an individual during its lifetime. If a � 1, then depletion is slow, and several

generations must pass before its effects are felt.

The parameter β , which controls the rate at which the resource is consumed relative to its

natural dynamics, is particularly important. The βxk term in Eq. (11) is the scaled rate at which

resource k is depleted, and corresponds to d in Eq. (9). For small βxk, depletion amounts to a small

perturbation of θk that pulls it just a bit away from 0. Since 0 ≤ xk ≤ 1, this behavior is inevitable

when β � 1. If β is large enough and xk ≈ 1, depletion pulls θk past the tipping point and sends

it on an excursion, representing the crash and recovery of resource k.
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The phase space can be thought of as a K-vertex simplex S K crossed with a K-dimensional

torus T K ,

X K = S K ×T K

=

{
(x1, . . . ,xK,θ1, . . .θK)

∣∣∣∣∣ 0 ≤ xk,∑
k

xk = 1,θk ∈ T 1

}
The notation (x |θθθ) will be used to mean the concatenation of a population state vector x and a

resource state vector θθθ into a single long vector, as in (x1, . . . ,xk,θ1, . . .θK). The interior of X K is

all points (x |θθθ) for which no xk is zero. The topological boundary ∂X K is an invariant manifold

consisting of those points (x |θθθ) where one or more of the xk’s is zero. Those represent trajectories

where some types are permanently extinct. The vector of resource variables θθθ takes values in a

torus, which has no inherent topological boundary, so all possible values of all θk’s are permitted

for points in ∂X K .

Note that if, on a trajectory, a particular x j is always 0, then the differential equation for the

corresponding resource Eq. (11) decouples from the rest of the dynamics and reduces to

θ̇ j = a×
(
cos
(
θ j + γ

)
− cosγ

)
which is equivalent to Eq. (8) after a change of timescale. In such circumstances, there are two

equilibrium values for θ j, −2γ and 0, and most trajectories will converge to the stable equilibrium

at 0.

II. PHASE PORTRAITS AND BIFURCATIONS

A. Solving for interior fixed points

In this section, we focus on the interior of the phase space, that is, points (x |θθθ) for which

ẋ = 0 and θ̇θθ = 0 as in Eqs. (10) to (11), and for which no xk is zero. Away from ∂X K , for all k,

0 < xk < 1, in which case setting ẋk = 0 forces every θk to satisfy cosθk = φ . Thus the θk’s take

on at most two distinct values ±arccosφ for each possible value of φ .

Setting θ̇k = 0 in Eq. (11) and isolating xk yields

xk =
cos(θk + γ)− cosγ

β
(12)

The constraint 0 < xk < 1 forces

0 < cos(θk + γ)− cosγ < β
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Figure 3. Graph of g(θ) = cos(θ + γ)−cosγ as a function of θ for the example case of γ = π/4. Note that

g(θ)> 0 between the zero crossings at −2γ and 0.

which forces θk to be between −2γ and 0 (see Fig. 3).

Since θk must be negative, it must be the case that θk
∼=−arccosφ . Furthermore, −π <−2γ <

θk, so sinθk = −
√

1−φ 2. The only possible value for xk as in Eq. (12) is now fixed. It may be

re-expressed using the sum identity for cosine as follows,

xk =
cosθk cosγ − sinθk sinγ − cosγ

β

=
φ cosγ +

√
1−φ 2 sinγ − cosγ

β
.

(13)

Since all of the xk’s are equal and must sum to 1, we get xk = 1/K. Incorporating this into Eq. (13)

results in

φ cosγ +
√

1−φ 2 sinγ − cosγ =
β

K
.

This equation can be solved by isolating
√

1−φ 2 and squaring both sides, yielding a quadratic

equation for φ . After simplification, its solutions are

φ̄± = cosγ ·
(

cosγ +
β

K

)
± sinγ ·

√
1−
(

cosγ +
β

K

)2

(14)

Let us also define

φ̂± =
√

1− φ̄ 2
± = sinarccos φ̄± (15)

so that sinθk =−φ̂± at these fixed points.
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Recalling that 0 < γ < π/2, β ≥ 0, and K > 0, the values of φ̄± in Eq. (14) are distinct and real

when

0 ≤ cosγ +
β

K
< 1. (16)

It is useful to define

β
∗
k = k(1− cosγ) for 1 ≤ k ≤ K (17)

so that Eq. (16) holds exactly when β < β ∗
K . When β = β ∗

K , the term under the square-root in

Eq. (14) is zero, so φ̄+ = φ̄−, which results in a bifurcation in which the two fixed points collide

and vanish as β increases. This turns out not to be a simple saddle-node bifurcation, but a much

more degenerate bifurcation, described in Section II B.

Substituting xk = 1/K into Eq. (12) and solving for θk results in

θk
∼=−γ ±δ (18)

where

δ = arccos
(

cosγ +
β

K

)
∈ [0,γ] (19)

or, equivalently,

β = K(cosδ − cosγ) ∈ [0,β ∗
K]. (20)

The bounds on δ are consequences of the condition β ≤ β ∗
K needed to ensure the existence of the

two fixed points in question, and the fact that the arccos in Eq. (19) is a decreasing function. Since

0 ≤ γ ±δ < π/2,

sinθk = sin(−γ ±δ ) =−φ̂±.

To summarize, when β < β ∗
K , there are two interior fixed points that will be named p±. For

both, each xk = 1/K, and the θk’s are all equal, taking on one of the two values −γ ±δ ∈ [−2γ,0].

p± =


1
K
...

−γ ±δ

...


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At p±, for all k,

xk =
1
K

θk =−γ ±δ

φ = φ̄±

φ̂± =
√

1− φ̄ 2
±

cosθk = cos(−γ ±δ ) = φ̄±

sinθk = sin(−γ ±δ ) =−φ̂±.

B. Linear stability analysis of interior fixed points

In this subsection, we calculate the Jacobian matrix and its eigenvalues and eigenvectors at p±.

The calculations are simpler using the extended phase space method. The constraint that ∑k xk = 1

is suspended, and all the xk’s are considered to be independent. It is then possible to treat X K as

an invariant manifold within an enlarged phase space RK ×T K .

Let us express the dynamics in terms of vector functions f and g

ẋ = f(x,θθθ)

θ̇θθ = g(x,θθθ)

where

fk(x,θθθ) = xk (cosθk −φ) and φ = ∑
j

x j cosθ j (21)

gk(x,θθθ) = a(cos(θk + γ)− cosγ −βxk) . (22)

The necessary partial derivatives are taken assuming that all variables are independent, which

yields

∂ fk

∂x j
=−xk cosθ j for j 6= k

∂ fk

∂xk
= (1− xk)cosθk −φ =−xk cosθk + cosθk −φ

∂ fk

∂θ j
= xkx j sinθ j for j 6= k

∂ fk

∂θk
=−xk(1− xk)sinθk
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and
∂gk

∂x j
= 0 for j 6= k

∂gk

∂xk
=−aβ

∂gk

∂θ j
= 0 for j 6= k

∂gk

∂θk
=−asin(θk + γ) .

At the two fixed points, using φ̄± from Eq. (14) and φ̂± from Eq. (15),

∂ fk

∂x j

∣∣∣∣
p±

=− 1
K

φ̄± for j 6= k

∂ fk

∂xk

∣∣∣∣
p±

=− 1
K

φ̄±

∂ fk

∂θ j

∣∣∣∣
p±

=− 1
K2 φ̂± for j 6= k

∂ fk

∂θk

∣∣∣∣
p±

=
K −1

K2 φ̂±.

(23)

Furthermore,

∂gk

∂x j

∣∣∣∣
p±

= 0 for j 6= k

∂gk

∂xk

∣∣∣∣
p±

=−aβ

∂gk

∂θ j

∣∣∣∣
p±

= 0 for j 6= k

∂gk

∂θk

∣∣∣∣
p±

=−asin(±δ ).

(24)

Using N for a K ×K matrix of all 1’s and I for the K ×K identity matrix, the partial derivatives at

the fixed points as given in Eqs. (23) to (24) may be stacked to form a Jacobian matrix with block

form

J|p± =


− 1

K φ̄±N φ̂±
(
− 1

K2 N+ 1
K I
)

−aβ I −asin(±δ )I

 .
Consider an eigenvector (x |θθθ) with eigenvalue λ , that is,

J|p±

 x

θθθ

= λ

 x

θθθ

 . (25)
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The upper half of Eq. (25) yields

− 1
K

φ̄±Nx+ φ̂±

(
− 1

K2 N+
1
K

I
)

θθθ = λx. (26)

The lower half of Eq. (25) yields

x =−
(

λ ±asinδ

aβ

)
θθθ . (27)

Using Eq. (27) to substitute for x in Eq. (26) yields(
1
K

φ̄±

(
λ ±asinδ

aβ

)
− 1

K2 φ̂±

)
Nθθθ

=

(
− 1

K
φ̂±−λ · λ ±asinδ

aβ

)
θθθ .

(28)

This is effectively an equation for eigenvalues of N. By inspection, the eigenvalues of N are K with

multiplicity 1, corresponding to the eigenvector 1; and 0 with multiplicity K − 1, corresponding

to the eigenvectors ek+1 − ek for k = 1, . . . ,K −1. (The notation e j refers to the elementary basis

vector in which element j is 1 and all others are 0.) Each of these yields two eigenvalues for J|p±

with corresponding multiplicities and eigenvectors. These eigenvalues will be named λ `
± with

` ∈ {T,U,Y,Z}. The letter serves as a tag to distinguish eigenvalues associated with the same

fixed point. The subscript sign (+ or −) indicates which fixed point (p+ or p−) the eigenvalue is

associated with. The corresponding eigenvectors will be named v`± using the same convention.

The eigenvalues λ T
± and λ U

± for J|p± are derived from the eigenvalue K of N. Substituting

θθθ = 1 into Eq. (28) and simplifying, each row becomes(
φ̄±+λ

)(λ ±asinδ

aβ

)
= 0.

Solving for λ yields two eigenvalues of J of multiplicity 1,

λ
T
± =−φ̄± and λ

U
± =∓asinδ .

The corresponding eigenvectors are

vT
± =


−−φ̄±±asinδ

aβ

...

1
...

 and vU
± =


0
...

1
...

 ,

which may be found by substituting for λ in Eq. (27).

15



When using the extended phase space, the right-hand side of Eq. (3) is interpreted as a vector

field on all of RK . The biologically interpretable points lie in S K ⊂ H . Within that framework,

one can determine the stability of a biologically interpretable fixed point x̄ ∈S K considering only

the behavior of nearby orbits within S K , but not those outside. In that case, initial conditions of

the form x̄+u are of interest only if u ·1= 0, a consequence of imposing the constraint x̄+u∈H ,

which amounts to (x̄+u) ·1 = 1. Thus, given a Jacobian matrix for the extended dynamics, only

eigenvectors u that satisfy u ·1 = 0 are relevant. For replicator-resource dynamics, that means an

eigenvector v = (u |ζζζ ) is relevant only if u · 1 = 0. Examining vT
± =

(
uT
±

∣∣∣ζζζ T
±

)
, uT

± is a scalar

multiple of 1, so uT
± ·1 6= 0 and it points out of H . Therefore, the corresponding eigenvalue λ T

± is

not of interest.

Note that the fixed points p± only exist when β < β ∗
K , in which case the bounds on δ from

Eq. (19) imply that λ U
± must be real.

The eigenvalues λ Y
± and λ Z

± for J|p± are derived from the eigenvalue 0 of N. Consider Nθθθ = 0

with θθθ = ek+1 − ek. Substituting into Eq. (28) results in a quadratic equation in λ ,

− 1
K

φ̂±−λ · λ ±asinδ

aβ
= 0

or

Kλ
2 ± (Kasinδ )λ +aβ φ̂± = 0. (29)

Since a, K, φ̂±, and β are all positive, both roots have the same sign when they are real. The roots

are

λ
Y
± =∓asinδ

2
−

√
(Kasinδ )2 −4Kaφ̂±β

2K

λ
Z
± =∓asinδ

2
+

√
(Kasinδ )2 −4Kaφ̂±β

2K
.

In all cases, the real parts of λ Y
− and λ Z

− are positive, and the real parts of λ Y
+ and λ Z

+ are negative.

Each of λ Y
± and λ Z

± inherits the multiplicity K −1. The corresponding eigenvectors vY
± and vZ

±

are built by stacking θθθ = ek+1 − ek with the x component determined from Eq. (27).

When β < β ∗
K , the fixed points p± exist and are distinct. The fixed point p+ is a sink because

the relevant eigenvalues, λ U
+ , λ Y

+ , and λ Z
+, all have negative real parts. Likewise, p− is a source

because all of its relevant eigenvalues have positive real parts.

The discriminant ∆± of Eq. (29) can be expressed in terms of δ by using Eq. (20) to substitute
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for β ,

∆± = (Kasinδ )2 −4Kaφ̂±β

= K2a
(
asin2

δ +4(cosδ − cosγ)sin(±δ − γ)
)

Its sign determines whether λ Y
± and λ Z

± are real or complex, and when expressed in terms of δ ,

this sign is independent of the number of types K. If β = 0, then δ = γ and

∆±|β=0 = K2a2 sin2
γ > 0,

so for small values of β , these eigenvalues are real. If β = β ∗
K , then δ = 0 and

∆±|β=β ∗
K
=−4K2a(1− cosγ)sinγ < 0,

so for large values of β , these eigenvalues are complex. By the intermediate value theorem, there

must be a δ between 0 and γ at which ∆± = 0. Using a computer algebra system such as Math-

ematica, it is possible to solve the equation ∆± = 0 for the value of δ at which the eigenvalues

become complex. The resulting expression is unwieldy and difficult to interpret, so it will not be

presented. Importantly, since the transition occurs at some δ > 0, the real components of λ Y
± and

λ Z
± are nonzero, so there is no Hopf-like bifurcation.

If β = β ∗
K , then δ = 0 and p+ = p−. Furthermore, λ U

± = 0, and both λ Y
± and λ Z

± are purely

imaginary, so a degenerate saddle-node bifurcation occurs as β crosses β ∗
K .

C. Fixed points on the boundary in the case of K = 2

We focus now on the low-dimensional case of K = 2. In this subsection, we use the reduced

system method. Starting from Eqs. (10) to (11) and eliminating x2 with the constraint x2 = 1−x1,

the dynamics are

ẋ1 = x1(1− x1)(cosθ1 − cosθ2)

θ̇1 = a(cos(θ1 + γ)− cosγ −βx1)

θ̇2 = a(cos(θ2 + γ)− cosγ −β (1− x1)).

(30)
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inner shell

outer shell
around

through

Figure 4. Representation of X 2 as a thickened torus D . The inner shell is the set of points where x1 = 0.

The outer shell is the set of points where x1 = 1. The dashed circle on the outer shell going through the

central hole is the set of points where x1 = 1 and θ2 = 0. The dashed circle around the outer shell represents

points where x1 = 1 and θ1 = 0. Arrows indicate the increasing direction of each variable. The interior fixed

points p+ and p− are indicated by dots.

The three-dimensional X 2 can be identified with a thickened torus. For this article, a specific

thickened torus, D ⊂ R3, will be used:

D =

{
R12 (θ2)




2

0

0

+R13 (θ1)


1
2 + x1

0

0




∣∣∣∣∣0 ≤ x1 ≤ 1,θk ∈ T 1

} (31)

where Rmn(θ) means rotation by θ in the (em,en) plane. Overall, D is built by rotating an annulus

in the (e1,e3) plane around a circle in the (e1,e2) plane. In Eq. (31), D is defined in terms of a

bijection that maps each point (x1,1− x1 |θ1,θ2) ∈ X 2 to a point in D as follows. Begin with

(1/2+ x1)e1. Rotate that point through the angle θ1 about the origin in the (e1,e3) plane. As x1

ranges over [0,1] and θ1 ranges over its circle, that step results in an annulus centered at the origin,

with inner radius 1/2 and outer radius 3/2. The annulus is then translated out so that it is centered

at 2e1, then rotated by θ2 in the (e1,e2) plane. See Fig. 4 for a visual explanation of the resulting

coordinate system.

The outer shell of ∂X 2 consists of points where x1 = 1 and x2 = 0, that is, strategy 2 is

permanently missing, so the entire population uses strategy 1. Trajectories passing through such
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points are confined to the outer shell. Only θ1 and θ2 are changing, and their dynamics decouple

into

θ̇1 = a · (cos(θ1 + γ)− cosγ −β )

θ̇2 = a · (cos(θ2 + γ)− cosγ) .
(32)

The solutions to θ̇2 = 0 are 0 and −2γ , which may be represented as

θ2 ∼=−γ ± γ. (33)

The solutions to θ̇1 = 0 are

θ1 ∼=−γ ±ω where ω = arccos(cosγ +β ) (34)

Both solutions for θ1 exist and are distinct if β < 1− cosγ = β ∗
1 , and coincide when β = β ∗

1 .

Thus, for β < β ∗
1 , there are four fixed points on the outer shell of ∂X 2. They are found by

mixing the two choices of θ1 from Eq. (34) with the two choices of θ2 from Eq. (33). The choice

for each θ j amounts to choosing a sign s j. The fixed points will be named q1(s1,s2) with the two

signs as arguments. Their components (x1,x2 |θ1,θ2) are

q1 (s1,s2) = (1,0 |−γ + s1ω,−γ + s2γ) where s j =±1.

There are parallel fixed points on the inner shell of ∂X 2,

q2 (s1,s2) = (0,1 |−γ + s1γ,−γ + s2ω) where s j =±1.

The arccos function is decreasing, so from the definition of ω in Eq. (34),

0 ≤ ω ≤ γ <
π

2
. (35)

If β = β ∗
1 , then ω = 0, which results in

q1(−1,s2) = q1(1,s2) = (1,0 |−γ,−γ + s2γ)

q2(s1,−1) = q2(s1,1) = (0,1 |−γ + s1γ,−γ) .

That is, two pairs of fixed points collide. When β > β ∗
1 , there is no real value for ω , so none of

these fixed points exist. Thus, a pair of saddle-node bifurcations happen simultaneously at β = β ∗
1 .
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D. Linear stability analysis of fixed points on the boundary in the case of K = 2

The linear stability analysis of the fixed points from Section II C is best conducted in three

dimensions, using the reduced system method, fixing x2 = 1−x1. The Jacobian matrix for Eq. (30)

in the three variables x1, θ1, and θ2 is

J =


(1−2x1)(cosθ1 − cosθ2) −x1(1− x1)sinθ1 x1(1− x1)sinθ2

−aβ −asin(θ1 + γ) 0

aβ 0 −asin(θ2 + γ)

 .
At the fixed point q1(s1,s2),

J|q1
=


cos(γ − s2γ)− cos(γ − s1ω) 0 0

−aβ −as1 sinω 0

aβ 0 −as2 sinγ

 .

Since this matrix is in lower triangular form, the eigenvalues can be read off the diagonal. They

will be named λ ` where ` ∈ {A,B,C}, where the letter serves as a tag to distinguish them. Each

is expressed as a function of one or two of the signs used to specify q1.

λ
A(s1,s2) = cos(γ − s2γ)− cos(γ − s1ω)

λ
B(s1) =−as1 sinω

λ
C(s2) =−as2 sinγ.

Convenient eigenvectors are

vA = (e1 |0)

vB = (0 |e1)

vC = (0 |e2) .

From Eq. (35) and assuming 0 < β < β ∗
1 and γ < π/2,

λ
B(−1)> 0, λ

B(1)< 0,

λ
C(−1)> 0, λ

C(1)< 0,
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and

λ
A(−1,−1) = cos2γ − cos(γ +ω)< 0,

λ
A(−1,1) = 1− cos(γ +ω)> 0,

λ
A(1,−1) = cos2γ − cos(γ +ω)< 0,

λ
A(1,1) = 1− cos(γ −ω)> 0.

Thus, all the fixed points are saddles: q1(−1,−1) has one negative eigenvalue and two positive;

q1(−1,1) has one negative and two positive; q1(1,−1) has two negative and one positive; q1(1,1)

has two negative and one positive. If β = β ∗
1 , then λ B(s1) = 0, consistent with the pair of saddle-

node bifurcations noted in Section II C.

Recall that the dynamics given by Eqs. (10) to (11) are symmetric under parallel permutations

of the xk’s and θk’s. This translates into the fact that the dynamics in Eq. (30) are symmetric under

the transformation x1 ↔ 1− x1 and θ1 ↔ θ2. Consequently, the fixed points on the inner shell,

given by x1 = 0, have behavior exactly parallel to that of the fixed points on the outer shell given

by x1 = 1.

E. Fixed points on the boundary for K > 2

When K > 2, many of the results of Sections II C and II D can be generalized. This is accom-

plished by taking advantage of the fact that ∂X K consists of lower-dimensional simplices. Now

that K is allowed to be greater than 2, we return to the extended phase space method of analysis.

1. When one xk = 1

Calculations in this section are the first step to generalizing those of Sections II C and II D

to K > 2. On each part of ∂X K such that there is one k for which xk = 1, the dynamics fix

xk at 1 while the other x j’s are permanently zero. Due to the symmetries of the dynamics, it is

only necessary to analyze the case of k = K, so any fixed points satisfy x = eK . The remaining

fixed-point equations come from setting θ̇ j = 0 in Eq. (11) and substituting x = eK ,

0 = a(cos(θK + γ)− cosγ −β )

0 = a(cos(θ j + γ)− cosγ) for 1 ≤ j < K.
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The solutions are

θK ∼=−γ + sKω where ω = arccos(cosγ +β )

θ j ∼=−γ + s jγ for 1 ≤ j < K,
(36)

where each s j = −1 or 1. Consequently, there are 2K fixed points, one for each combination of

values for all the s j’s. Generalizing the notation from Section II C, they will be denoted qk(s) with

the subscript indicating the k for which xk = 1,

qk(s) =

(
ek

∣∣∣∣∣(−γ + skω)ek + ∑
j 6=k

(−γ + s jγ)e j

)
.

For linear stability analysis, we will use the extended phase space and Jacobian matrix, as in

Section II B. Again, due to symmetry, we need only consider qK . It is best to break up the Jacobian

into blocks,

J|qK
=

 E 0

−aβ I F

 , (37)

where E is diagonal except for the last row,

E =


cosθ1 − cosθK 0 . . . 0

0 cosθ2 − cosθK
...

... . . . 0

−cosθ1 −cosθ2 . . . −cosθK


and F is diagonal,

F =


−asin(θ1 + γ) 0 . . .

0 −asin(θ2 + γ)
... . . .

 .
The eigenvalues of J|qK

will be named λ `
j , where the letter ` ∈ {E,F} is a tag that indicates which

part of the matrix in Eq. (37) the eigenvalue is read from, and j ∈ {1, . . . ,K}. The corresponding

eigenvectors will be named v`j using the same convention.

Since this Jacobian is for the extended phase space, there should be one spurious eigenvector

whose x-component points out of the plane H . In this case, it is

vE
K =

((
cosθK −asin(θK + γ)

aβ

)
eK

∣∣∣∣eK

)
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associated with the bottom-right entry of E, namely, λ E
K = −cosθK . Thus, the eigenvalue λ E

K is

not relevant to the linear stability analysis of fixed points within X K . For additional confirmation,

note that this eigenvalue has no analog in Section II D, in which the spectrum of the Jacobian was

calculated using the reduced system method.

Substituting for θθθ with Eq. (36),

λ
E
j (s) = cos(−γ + s jγ)− cos(−γ + sKω) for 1 ≤ j < K

λ
F
j (s) =−as j sinγ for 1 ≤ j < K

λ
F
K(s) =−asK sinω.

(38)

The eigenvectors vF
j (s) are easily seen to be

(
0
∣∣e j
)
. To recover the other eigenvectors, substitute

the form vE
j (s) =

(
c(e j − eK)

∣∣de j + eK
)

for v in Jv = (cosθ j − cosθK)v, where c and d are un-

knowns to be solved for. The x-component of that equation holds for every c. The θθθ -component

requires

−aβc−asin(θK + γ) = cosθ j − cosθK

aβc−dasin(θ j + γ) = (cosθ j − cosθK)d

which yields

c =−
cosθ j − cosθK +asin(θK + γ)

aβ

d =−
cosθ j − cosθK +asin(θK + γ)

cosθ j − cosθK +asin(θ j + γ)
.

Then substitute for θθθ using Eq. (36). The resulting expression for vE
j (s) is large and not needed,

so it will not be displayed here.

The eigenvalues λ `
j in Eq. (38) are always real. Assuming 0 < β < β ∗

1 and γ < π/2, from

Eq. (35), the same reasoning as in Section II D implies that for all j,

sgnλ
F
j (s) =−s j.

Furthermore,

sgnλ
E
j (s) = s j.

So these fixed points are all saddles.

For different choices of s, the fixed points qk(s) are generally distinct unless β = β ∗
1 , in which

case ω = 0, and pairs of fixed points that differ at only one element of s collide. The result is many

simultaneous saddle-node bifurcations that result in the elimination of all fixed points qk(s).
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2. When some subset of xk’s are all 0

Given 1 < L < K, consider the subset X L of X K consisting of the points (x |θθθ) for which

xL+1 = 0,xL+2 = 0, . . . ,xK = 0. Then X L can be interpreted as the phase space of an L-strategy

version of the same game dynamics on x1, . . . ,xL and θ1, . . . ,θL, with the remaining xk pinned

permanently at 0 and corresponding θk variables decoupled. As a base case, the analysis of X 2 is

exactly as presented in Sections II C, II D and II E 1. For higher values of K, the analysis proceeds

inductively as follows.

Consider K = 3 and the subset of X 3 where x3 = 0. The resource variable θ3 is now decoupled

from the other variables, whose dynamics are otherwise the same as those of replicator-resource

dynamics with K = 2. Therefore, every fixed point for K = 3 on the face of ∂X 3 where x3 = 0 is

of the form (x1,x2,0 |θ1,θ2,−γ + s3γ) with s3 =±1, corresponding to a fixed point (x1,x2 |θ1,θ2)

under replicator-resource dynamics with K = 2. Conversely, all fixed points on the face of ∂X 3

where x3 = 0 may be found by starting with the fixed points (x1,x2 |θ1,θ2) found in Sections II A

and II C, and extending them with x3 = 0 and θ3 ∼= −γ + s3γ with s3 = ±1. The extension with

s3 = 1 sets θ3 ∼= 0, so x3 would increase if perturbed away from 0, resulting in an unstable fixed

point in ∂X 3. The extension with s3 = −1 sets θ3 ∼= −2γ , which is unstable in θ3, likewise

resulting in an unstable fixed point in ∂X 3.

The fixed points q j(s1,s2) found in Section II C all vanish in simultaneous saddle-node bifur-

cations as β increases through β ∗
1 , so the same happens to their extensions in ∂X 3. Likewise, the

fixed points p± found in Section II A on the interior of X 2 vanish in simultaneous bifurcations as

β increases through β ∗
2 , so the same happens to their extensions in ∂X 3.

The same reasoning applies for the dynamics restricted to any choice of two indices out of

{1,2,3} for the x j’s that are allowed to be non-zero. Overall, the result is a variety of saddles and

sources on the boundary of X 3 that collide and vanish as β increases. The ones with one non-zero

x-element vanish when β = β ∗
1 . The ones with two non-zero x-elements vanish when β = β ∗

2 . The

two fixed points p± in the interior of X 3 collide and vanish when β = β ∗
3 .

The same reasoning can be applied iteratively. In general, the boundary of X K contains many

sources and saddles, and the ones for which L of the x-elements are non-zero collide and vanish

when β = β ∗
L . The last two surviving fixed points are a source p− and a sink p+ on the interior of

X K . The sink p+ is the only stable fixed point for any choice of β .
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F. Global consequences of the bifurcation at β = β ∗
1

We consider the case of general K, using the case of K = 2 and the representation of X 2 as

D as in Eq. (31) for illustration purposes. There is an important global change of behavior as β

increases through β ∗
1 . Observe from Eq. (11) that as long as

β < β
∗
1 = 1− cosγ

there is an interval on each θk’s circle of possible values for which θ̇k > 0 no matter what xk is.

Formally, starting with Eq. (10), and assuming β = β ∗
1 − ε , any value of x results in

1
a

θ̇k ≥ cos(θk + γ)− cosγ − (β ∗
1 − ε)

= cos(θk + γ)− (1− ε) ,

which is positive for θk in an interval around −γ . The existence of this interval prevents trajectories

from whirling clockwise around the θk circle.

In the case of K = 2, this means trajectories can neither whirl around the central hole of D

nor through it. The intervals in question appear as sectors of the thickened torus that lie entirely

between the nullclines N θ
k of the resource variables,

N θ
k =

{
(x |θθθ) ∈ X K ∣∣ θ̇k = 0

}
. (39)

When β < β ∗
1 , these nullclines stretch from the inner shell of D , where x1 = 0, to the outer shell,

where x1 = 1. See Fig. 5.

To confirm this in general, let Sk be the subset ∂X K where xk = 1. (In the case of K = 2, S1 is

the outer shell of ∂D and S2 is the inner shell.) Consider the intersection of Sk and the nullcline

N θ
k . Setting θ̇k = 0 from Eq. (11), substituting xk = 1, and eliminating the factor of a yields

0 = cos(θk + γ)− cosγ −β . (40)

The graph of the right-hand side looks like Fig. 3 but shifted down by β .

If β < β ∗
1 = 1− cosγ , then solving Eq. (40) for θk yields two solutions, θk

∼= −γ ±ω as in

Eq. (36). The other θ j’s for j 6= k range over their whole circles. Therefore, N θ
k meets Sk in two

(K −1)-dimensional tori.

If β = β ∗
1 , then ω = 0 and there is only the one solution θk = −γ . Effectively, the two tori

merge, and N θ
k is tangent to Sk along that one (K −1)-dimensional torus.
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(a) (b)

(c) (d)

Figure 5. Nullclines before the bifurcation, β < β ∗
1 . Parameters: β = 0.2, a = 1, γ = π/4. Subfigures (a)

and (b): Two views of N θ
1 as in Eq. (39). Subfigures (c) and (d): Two views of N θ

2 as in Eq. (39).

(a) (b)

(c) (d)

Figure 6. Nullclines at the bifurcation at β = β ∗
1 . Parameters: β = 1− 1/

√
2 ≈ 0.292893, a = 1, γ = π/4.

Subfigures (a) and (b): Two views of N θ
1 as in Eq. (39). The two pieces seen in Fig. 5 have merged into

one piece tangent to the outer shell along a circle. Subfigures (c) and (d): Two views of N θ
2 as in Eq. (39).

Again, the two pieces have merged and the single surface is tangent to the inner shell.
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(a) (b)

(c) (d)

Figure 7. Nullclines after the bifurcation, β > β ∗
1 . Parameters: β = 0.4, a = 1, γ = π/4. Subfigures (a) and

(b): Two views of the θ1 nullcline. It has detached from the outer shell. Subfigures (c) and (d): Two views

of the θ2 nullcline. It has detached from the inner shell.

If β > β ∗
1 , then there is no solution to Eq. (40) for θk. Now N θ

k is detached from Sk, leaving

room for θk to decrease indefinitely. For illustration purposes, let us return to the low-dimensional

case of K = 2. See Fig. 6 for the nullclines at this bifurcation (β = β ∗
1 ), and Fig. 7 for the nullclines

afterward (β > β ∗
1 ). Note how the two components of the nullclines merge and partially detach

from ∂D , leaving a gap where trajectories can whirl. This restructuring of the nullclines causes

the bifurcations in which fixed points on ∂D collide and vanish. On the outer shell of ∂D , the

dynamics of θ1 and θ2 reduce to Eq. (32), so once β > β ∗
1 , there are no solutions to θ̇1 = 0 there;

instead, θ̇1 < 0 always, so all trajectories on the outer shell whirl through the central hole without

stopping. Likewise, when β > β ∗
1 , all trajectories on the inner shell whirl around the central hole

because θ̇2 < 0 there.

Since the state of a trajectory at a time t depends continuously on its initial state, there are

trajectories on the interior of X K that stay close to the boundary and whirl around in θk many

times before converging to p+ as t → +∞ and to p− as t → −∞. In the pictures of D , whirling

in θ2 takes place close to the inner shell where x1 = 0, or equivalently, x2 = 1. That is, when

strategy 2 is very popular, its associated resource is depleted rapidly until it crashes. Sometimes,

x2 decreases enough that the trajectory passes through the θ2 nullcline and stops whirling. In other

27



(a) (b) (c) (d)

Figure 8. Trajectories that whirl (a) zero, (b) once, (c) twice, and (d) three times around the central hole

before converging to p+. All start on the annulus θ2 ∼= 0 and proceed clockwise. Parameters: β = 0.4,

a = 1, γ = π/4.

cases, the resource recovers quickly enough to go through more crash and recovery cycles before

x2 decreases significantly.

When β ∗
1 < β < β ∗

K , it appears that most trajectories in the interior of X K eventually converge

to p± as t →±∞. These trajectories will be called ordinary. There must also be a low-dimensional

set of extraordinary trajectories on the interior of X K that do not converge to p± as t → ±∞.

These ought to exist because there must be separatrices between sets of ordinary trajectories with

distinct topological types, that is, those that whirl different numbers of times in the θk variables.

For example, separatrices form the boundary between ordinary trajectories that converge to p+

without further whirling from those that pass close to p+ but veer off and whirl around again

before finally converging. Potentially, there may also be hybrid trajectories that would come in

two types. A hybrid trajectory of the first type converges to p+ in forward time but not to p− in

backward time. A hybrid trajectory of the second type converges to p− in backward time but not

to p+ in forward time. It is not yet clear whether any hybrid trajectories exist.

From another perspective, we can consider the dynamics of each resource variable θk as taking

place on R. The magnitude of θk indicates how many times a trajectory has whirled around the

central hole. This unrolls X K into a periodic phase space, with a lattice of fixed points that differ

by an integer multiple of 2π in each θk. The basins of attraction of these fixed points must have

separatrices, which can be mapped back into the original X K .

The nature of the separatrices is unclear. One possibility is that there are periodic orbits in X K

of saddle type, and that their stable manifolds form the separatrices. There are also saddle points

on ∂X K whose stable manifolds are of the appropriate dimension and may form separatrices.

However, it is also possible that the separatrices are invariant manifolds with no relatively stable

orbits at all. For example, a separatrix might be a tube that nests within itself as it whirls in θ1,
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(a) (b)

(c) (d)

Figure 9. Initial conditions on the annular cross-section of D where θ2 ∼= 0 that converge to p+ (a) directly

as in Fig. 8(a); (b) after one whirl in θ2 as in Fig. 8(b); (c) after two whirls in θ2 as in Fig. 8(c); (d) after

three whirls in θ2 as in Fig. 8(d). Parameters: β = 0.58 < β ∗
K , a = 1, γ = π/4.

within which all orbits rotate irregularly in θ2 and are all unstable.

It is possible to map out sets of trajectories with particular topological properties numerically.

Initially, let us focus on the low-dimensional case of K = 2, and count whirls in θ2 in forward time

only. The resulting pictures show only partial topological information, as whirls in backward time

are not counted, and only whirls in θ2 are considered. As a heuristic, starting from θ2(0) = 0, if m2

is the positive integer such that θ2(400) and θ2(500) both lie between −2(m2 +1)π and −2m2π ,

then the trajectory is considered to have made m2 whirls in θ2 before converging to p+ in forward

time. The set of initial conditions making a given number of whirls wraps around the phase space

in a very complicated way and appears to be fractal, as shown in Figs. 9 and 10.

For smaller values of β , a large subset of X 2 consists of trajectories that converge to p+ in

forward time without further whirling. These form the large red region in Fig. 10 (a). For larger

values of β , this region is smaller, as shown in Fig. 10 (b).

Looking in both forward and backward time and with general K, the complete topological type

29



(a) (b)

Figure 10. Initial conditions on the annulus θ2 ∼= 0, color coded by how many whirls in θ2 they make in

forward time before going to p+. In (a), β = 0.4, and in (b), β = 0.58. Other parameters: a = 1, γ = π/4.

(1,1) (1,2) (2,1)

Figure 11. Trajectories of topological type (m1,m2) = (1,1), (1,2), and (2,1), using β = 0.58, a = 1,

γ = π/4.

of an ordinary orbit can be expressed as a vector m = (m1,m2, . . . ,mK) of the number of whirls mk

it makes in each θk. That is, treating θk as a real number,

mk =

⌈
1

2π

(
lim

t→+∞
θk − lim

t→−∞
θk

)⌉
. (41)

As was done with the partial topological type in Fig. 8, in the case of K = 2, it is possible to nu-

merically locate example orbits of various complete topological types and display them as shown

in Fig. 11.

The sets of orbits of various topological types can also be approximated. They have compli-

cated shapes, are intricately layered, and may not be connected. The numerical procedure is to

take points from a cross-section of X 2 as initial conditions, and integrate forward and backward

in time treating each θk as a real number. If the estimated values of θk at the backward and forward

ends are unchanged for a long time interval, the whirl count is calculated from the difference as in

Eq. (41). Initial points in that cross section are color coded according to those whirl counts. See
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Figure 12. Cross section θ2 ∼= 0 colored by complete topological type, using β = 0.58, a = 1, γ = π/4.

Bundles of orbits of three topological types (m1,m2) = (1,1), (2,1) and (1,2) are shown, with lines to the

subset of the cross section from which they were taken. Orbits within each bundle are colored randomly to

make the whirling structure visible.

Fig. 12, in which topological types are shown up to four whirls in each of θ1 and θ2. Sets of orbits

with higher whirl counts are so finely layered that it is difficult to resolve them visually, so the

corresponding initial conditions are left uncolored.

Due to the symmetries of the dynamics, if an orbit of type (m1,m2) exists, there should also be

an orbit of type (m2,m1). It is not yet clear whether orbits of every possible topological type exist

for every choice of parameters.
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G. Global consequences of the bifurcation of the interior fixed points at β = β ∗
K

The collision and annihilation of p+ and p− when β = β ∗
K is a local bifurcation, but it has

global consequences. Once β > β ∗
K , it appears that all trajectories whirl without stopping and

there are no longer any stable orbits in X K . The result is chaotic oscillations. The well-known

horseshoe mechanism2,21 appears to be present in the Poincaré section shown in Fig. 13. Chaos

appears instantaneously, with no period-doubling cascade. The underlying mechanism is not yet

clear; candidates include various crisis-like, explosive, or dangerous bifurcations9,23.

The picture in Fig. 13 is computationally challenging to produce. Starting from the boundary

of a strip in the Poincaré section θ2 = 0, where 0.25 ≤ x ≤ 0.75 and −0.1 ≤ θ1 ≤ 0.04, initial

conditions are followed forward in time for one complete whirl, that is, until they return for the

first time to the Poincaré section. The first-return point of a trajectory is found by stopping the

numerical integration when θ2 =−2π ∼= 0. These first-return points are then joined into a polygon.

The result is a partial Poincaré or first-return map, showing what happens to each point in the strip

when it first returns to the initial annulus. Starting from a coarse set of points on the boundary

of the strip, an iterative adaptive refinement procedure produces the final picture. If two adjacent

initial conditions result in future points separated by more than 0.01 in Euclidean distance, another

initial condition is inserted at the midpoint of the first two and followed forward. This process is

repeated until all adjacent initial conditions lead to future points within 0.01, thereby forming a

smooth approximation of the boundary of the swoosh in Fig. 13. The choice of β = 0.7 for this

picture was for computational convenience. The calculations as implemented overwhelmed the

author’s workstation if β was too close to β ∗
K . If necessary, that problem could be remedied by

writing a more sophisticated program.

The color coding shows which part of the strip maps to which part of the swoosh. The mapping

preserves the overall orientation of the strip. The strip stretches in the x1 direction and squeezes in

the θ1 direction, while folding twice. The Poincaré map appears to have at least three fixed points,

one in the red area to the left, one in the green area in the middle, and one in the orange area to the

right. Assuming the horseshoes are as the numerical approximation suggest, there are infinitely

many more fixed points just in this strip. These correspond to unstable closed orbits in the overall

dynamics. Such closed orbits may be assigned a topological type depending on how many whirls

they make in each θk, similar to the types assigned to ordinary orbits before the bifurcation. It is

not yet clear whether orbits of all possible types exist.
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Figure 13. Poincaré (first-return) map indicating horseshoes. Initial conditions are taken from the edges

of a strip in the annulus θ2 = 0. Each is mapped forward in time until θ2 = −2π , resulting in the swoosh.

Parameters: β = 0.7, a = 1, γ = π/4.

100 200 300 400 500
t

0.2

0.4

0.6

0.8

1.0

x1

100 200 300 400 500
t

-1.0

-0.5

0.5

1.0

cos (θ1)

Figure 14. Part of a trajectory in the chaotic regime. Parameters: β = 0.7, a = 1, γ = π/4, θ1(0) = 0,

θ2(0) = 0, x1(0) = 0.6. Top: Trajectory in 3D. Bottom left: x1 component as a function of time. Bottom

right: cosθ1 component as a function of time.
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The origin of chaos here seems to be that ordinary orbits of many topological types are present

before the bifurcation at β = β ∗
K . These fill the bulk of the phase space. Unstable extraordinary

orbits form the separatrixes between sets of ordinary orbits of different types. Once p+ and p−

collide and vanish, ordinary orbits can no longer exist. Remnants of the separatrix structure may

persist, but there are no longer any stable orbits.

Note that the θk’s are still coupled in this regime through their dependence on the xk’s. The

chaotic behavior is not simply a collection of independent, unsynchronized, nonlinear oscillators.

A sample trajectory with K = 2 is shown in Fig. 14. Note that x1 varies from nearly 0 to nearly 1,

and θ1 whirls irregularly with significant backtracking. Thus, all three variables are non-trivially

coupled.

As was noted in Section II E 2, for larger K, portions of ∂X K may be interpreted as L-strategy

replicator dynamics of the same form, with the other K −L population variables x j fixed at zero

and the corresponding resource variables θ j decoupled. When β passes through β ∗
L , the same kind

of transition to chaos happens within those components of the boundary, so lower-dimensional

chaos appears there as β increases.

H. Periodic orbit imposed by symmetry

As a consequence of the permutation symmetry of Eqs. (10) to (11), one periodic orbit of

topological type (1,1, . . .) is present for sufficiently large β . It is given by

xk(t) =
1
K

for all k (42)

and each θk is a solution of the initial value problem

θ̇k = a×
(

cos(θk + γ)− cosγ − β

K

)
θk(0)∼= 0

(43)

Any initial value used for all θk produces the same orbit with different time parameterization. See

Fig. 15.

For β < β ∗
K , this periodic orbit does not exist, because initial conditions of the appropriate form

generate ordinary trajectories that converge to p± instead of tracing a closed curve. It can exist for

β > β ∗
K because θ̇k in Eq. (43) is always strictly negative. In Fig. 13, it corresponds to the fixed

point of the Poincaré map indicated by the green area in the middle of the strip and swoosh.
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Figure 15. Periodic orbit as in Eqs. (42) to (43). Parameters: a = 1, γ =−π/4, β = 0.7.

Further numerical evidence confirms that this orbit is of saddle type, consistent with its position

in the horseshoe. See Fig. 16 for part of a Poincaré section through the annulus given by θ2 ∼= 0.

The axes are x1 and θ1. The periodic orbit passes through the center of the picture at x1 = 1/2 and

θ1 ∼= 0. The blue circle is of radius 0.01, and orbits initialized on it return to the Poincaré section

to form the orange ellipse. The Poincaré map clearly stretches its phase space in one direction

while squeezing in another, implying that the central fixed point is a saddle.

It is possible that the stable and unstable manifolds of this closed orbit intersect and form a

homoclinic tangle, which would provide another explanation for the overall chaotic behavior10.

III. CONCLUSION

The standard replicator equation was modified so that the payoff from playing a strategy is a

function of the state of a corresponding renewable resource. New variables were included repre-

senting the states of the resources, and their dynamics include terms so that each is depleted in

proportion to the fraction of the population using the associated strategy. Under some conditions,

the behavior of trajectories is relatively simple. However, many open questions remain.

When the depletion rate parameter β is low, most initial conditions with a non-zero fraction

of the population using each strategy converge in forward time to a fixed point p+ that represents

a state in which all strategies are equally popular and all resources are at stable levels, depleted
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Figure 16. Detail of the Poincaré map in the vicinity of the periodic orbit. The overall cross section is the

annulus θ2 ∼= 0. The left picture (a) shows the circle of initial conditions and the ellipse of return points.

The right picture (b) overlays lines connecting sample initial points to their return points, to indicate the

inherent shear. Parameters: a = 1, γ =−π/4, β = 0.7.

at a sustainable rate. Initial conditions in which some strategies are absent have similar behavior,

restricted to the subset of the phase space in which those strategies are permanently extinct. Re-

sources do not crash, and geometrically, it is not possible for trajectories to whirl around the phase

space.

When the depletion rate increases through β = β ∗
1 , it becomes possible for resources to crash

and trajectories to whirl. A whirl in θk corresponds to exhaustion of the resource, followed by

recovery. While β < β ∗
K , most trajectories seem to undergo finitely many whirls in each θk between

converging in forward time to p+ and in backward time to p−. It is unknown whether orbits with

every possible topological type of whirling exist.

As the depletion rate increases further, through β = β ∗
K , all resources are depleted so rapidly

that they are trapped in an irregular crash-and-recovery cycle. Numerical evidence points to the

immediate appearance of chaos at this value of β , without a period-doubling cascade. It seems

to be a consequence of the existence of a complicated family of invariant manifolds that form the

separatrices between sets of ordinary orbits of different topological types for β < β ∗
K . These may

be stable manifolds of unstable periodic orbits, or they may be something else entirely. It is not yet

known exactly which aspects of this separatrix structure persist and in what sense as β increases.

The approach taken in this article to the general problem of replicator dynamics with depletable

resources was to work in an arbitrary number of dimensions, but with highly symmetric dynam-
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ics. Every strategy is exactly equivalent to every other strategy. Consequently, the bifurcation in

which p+ and p− collide is degenerate. An alternative approach would be to work in only a few

dimensions and break some of the symmetry, thereby unfolding this degenerate bifurcation and

perhaps allowing for other behavior, such as stable oscillations.

Another possible extension is to include both a general two-player game and resource dynam-

ics. Fitness would be the sum of the game payoff as in Eq. (4) and the resource term cosθk

introduced in Section I B,

ck = cosθk +∑
j

Ak, jx j. (44)

Again, this breaks the symmetries of Eqs. (10) to (11), so it would be necessary to begin with

low-dimensional cases.

Another possible extension is to allow strategies to deplete multiple resources at different rates.

It requires a consumption matrix B such that Bk, j is the equivalent of β for how quickly strategy j

consumes resource k. The resource dynamics Eq. (11) would then change to

θ̇k = a×

(
cos(θk + γ)− cosγ −∑

j
Bk, jx j

)
. (45)

It is also possible to combine Eq. (44) and Eq. (45), although there would be so many parameters

that a complete bifurcation analysis may not be feasible.

SUPPLEMENTARY MATERIAL

Mathematica notebooks used to create the pictures in this article are posted as supplementary

files.
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